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Overview

• Repetition Bragg law, Laue condition and reciprocal lattice

• Diffraction as Fourier transform of a crystal

• Interaction of material with different radiation → focus on X-rays

• Interaction of X-rays with electrons

• Interactions of X-rays with atoms → atomic form factor

• Interaction of X-rays with a unit cell of a crystal → structure factor

• Diffraction pattern and systematic absences

→(Hammond Chapter 9)

→Jens Als-Nielsen & Des McMorrow “Elements of Modern X-ray Physics” Chapter 5
→ Phil Willmott, “Introduction to Synchrotron Radiation” Chapter 6
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Young’s double slit experiment

 Constructive interference: 

 If             ,      is small 

 

 

by Phil Willmott

optical path difference OPD
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Again,                                  or 
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Bragg’s law

by Phil Willmott
→ exercise 4



Elastic scattering
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wave vector 𝒌 =
2𝜋

𝜆

elastic scattering: no loss in photon 

energy but direction of the photon can 

change with a scattering angle 2θ

𝒌𝑖𝑛 = 𝒌𝑜𝑢𝑡

scattering vector 𝒒 = 𝒌0 − 𝒌

𝑞 = 2 𝑘 sin 𝜃 =
4𝜋 sin 𝜃

𝜆

q

k0 = kin



Laue’s condition and Bragg’s law
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q = k-ko = N* = K

q

𝑞 =
2𝜋

𝑑

k

k

k0

k0



The scattering vector q always lies 
perpendicular to the scattering planes if the 
Bragg condition is fullfilled  

the angle subtended by kin = 2𝜋∕𝜆 (or kout) 
and the scattering planes is 𝜃. 

The scattering angle is 2𝜃

Bragg law:

independent of wave length 
(experimental condition)

Bragg law
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2𝑑 sin 𝜃 = nλ

𝒒 = 𝑞 =
4𝜋sin(𝜃)

𝜆

𝑑 = n
2𝜋

𝑞



Laue condition → The reciprocal space lattice

𝑲 = 𝒌 − 𝒌0reciprocal lattice vector N*=

Laue condition



a

c

b a*

c* b*

Real space Reciprocal space

e.g. a < b < c a* > b* > c*

The spacings between peaks in reciprocal lattice 
(a*, b*, c*) are inversely proportional to the 

corresponding dimensions in real space (a, b, c) 

The reciprocal lattice represents the 
framework and components of the diffraction 
pattern 

Reciprocal space lattice → diffraction pattern

The reciprocal lattice is the 
Fourier transform of the 
direct lattice!



Fourier series in one dimension

MSE-238 10https://lampz.tugraz.at/~hadley/ss1/skriptum/outline.php

can also be expressed in exponential form



Fourier series
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the resulting curve depend on the amplitude A 
and the phase between the waves

https://lampz.tugraz.at/~hadley/ss1/skriptum/outline.php



Fourier series and Fourier transform

MSE-238 12

Fourier transform of one-dimensional function 𝑓(𝑥) is

𝐹 𝐾 = ∞−׬

+∞
𝑓(𝑥)𝑒𝑖𝐾𝑥 𝑑𝑥 

sum over the reciprocal lattice vectors K

fG complex coefficients (called structure factors)

Fourier series: for periodic functions, discrete sum of harmonics

Fourier transform extends also to non periodic functions, integral 

𝑆 𝑲 = ෍

𝑗

𝑓𝑗 𝑲 𝑒𝑖𝑲∙𝒓𝑗



Diffraction and Fourier transform

𝜓 𝑠𝑦𝑠𝑡𝑒𝑚 ∝ ℱ𝒯(𝑠𝑦𝑠𝑡𝑒𝑚)
𝜓 𝑐𝑟𝑦𝑠𝑡𝑎𝑙 ∝ ℱ𝒯(𝑐𝑟𝑦𝑠𝑡𝑎𝑙)

The reciprocal lattice is the Fourier transform of the direct lattice

→ what is missing for a crystal? 



Bravais lattice 

⊗ Basis 

= Crystal 

by Phil Willmott



Diffraction

• Bragg’s law: simple geometric consideration if a constructive interference CAN 
occur

• Crystal is not just the lattice (and lattice planes) but also consists of a motif!

• it is the lattice which determines the geometry of the pattern and the motif 
which determines the intensities of the X-ray diffracted beams.

• The diffraction pattern is the is the square of the Fourier transform of that 
system
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a*

c* b*



Diffraction and Fourier transform

scattering amplitude from a crystalline material

𝐹𝑐𝑟𝑦𝑠𝑡𝑎𝑙 𝒒 = ෍

𝑙

𝑎𝑙𝑙 𝑎𝑡𝑜𝑚𝑠

𝑓𝑙 𝒒 𝑒𝑖𝒒∙𝒓𝑙

atomic form factor of the 
atom situated at position rl

rl = Rn+rj

Rn lattice vector
rj position vector of the 
atoms in the unit cell 
(= the motif)

lattice unit cell structure factor

= ෍

𝑹𝑛+𝒓𝑗

𝑎𝑙𝑙 𝑎𝑡𝑜𝑚𝑠

𝑓𝑙 𝒒 𝑒𝑖𝒒∙(𝑹𝑛+𝒓𝑗) = ෍

𝑛

𝑒𝑖𝒒∙𝑹𝑛 ෍

𝑗

𝑓𝑙 𝒒 𝑒𝑖𝒒∙𝒓𝑗

atomic form factor of the 
atom situated at position rl



Reciprocal lattice and Fourier transform

a diffraction pattern is the Fourier Transform 
of the object that produces it 

• Each point in the reciprocal lattice is 
therefore a “Fourier component” of the 
diffraction pattern 

• The position of each point in the RL 
defines the frequency and direction of a 
sinusoidal wave of electron density 

by Phil Willmott



Reciprocal lattice and Fourier transform

by Phil Willmott



Reciprocal lattice and Fourier transform

diffraction peak (reciprocal space vector) in the same direction from the diffraction 
peak centre but twice the distance or length→ corresponding electron wave has 
double the frequency



Reciprocal lattice and Fourier transform

a diffraction pattern is the Fourier Transform 
of the object that produces it 

• Each point in the reciprocal lattice is 
therefore a “Fourier component” of the 
diffraction pattern 

• The position of each point in the RL 
defines the frequency and direction of a 
sinusoidal wave of electron density 

• The intensity at each point 
defines the amplitude of the wave 

by Phil Willmott



Electromagnetic wave and measured intensity
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𝜓 𝒓, 𝑡 = 𝐴𝑒𝑖(𝒌⋅𝒓−𝜔𝑡+𝜙)

what we can measure is the intensity I

𝐼 ∝ 𝜓 𝒓, 𝑡 2

𝜓 𝒓, 𝑡 2 = 𝐴𝑒𝑖(𝒌⋅𝒓−𝜔𝑡+𝜙) 2
 with 𝑒𝑖𝜃 = 1 = 𝑥2 + 𝑦2

𝜓 𝒓, 𝑡 2 = 𝐴 2

𝐼 ∝ 𝐴 2 → measured intensity only depends on amplitude, not the phase

we know the direction of the wave and its amplitude over the measured 
intensity
we cannot just take the Fourier transform to get back to the direct lattice & 
motif since we don’t know the phase
→generally know as “the phase problem”



Reciprocal lattice and Fourier transform

a diffraction pattern is the Fourier Transform 
of the object that produces it 

• Each point in the reciprocal lattice is 
therefore a “Fourier component” of the 
diffraction pattern 

• The position of each point in the RL 
defines the frequency and direction of a 
sinusoidal wave of electron density 

• The intensity at each point defines the 
amplitude of the wave 

• The phase  of that wave is fixed for 
that wave relative to all the other waves 
but cannot be measured directly 

by Phil Willmott



Reciprocal lattice and Fourier transform

by Phil Willmott



Full information content of reciprocal lattice

… take the information provided by each diffraction point in the reciprocal lattice

• The direction (angle) of the wave relative to the origin of the reciprocal lattice

• The frequency (given by the distance from origin of the reciprocal lattice, 
proportional to 1/l) 

• The amplitude of the wave, given by the square root of the intensity

▪ if one can work out the phase  associated with each of these points (techniques 
exist, but not covered in this course)

▪  … draw the corresponding wave 𝜓(A,,) in real space  and add them all 
together



Example: the scattering of collagen
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De Caro, L., Terzi, A., Fusaro, L., Altamura, D., Boccafoschi, F., 

Bunk, O. & Giannini, C. (2021). IUCrJ 8, 1024–1034.
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Cl

F

CC

C

C

C

C

Electron density profile of each unit cell

by Phil Willmott



Electron density profile of each unit cell

by Phil Willmott



Diffraction and Fourier transform

𝐼 𝑐𝑟𝑦𝑠𝑡𝑎𝑙 ∝ ℱ𝒯(𝑐𝑟𝑦𝑠𝑡𝑎𝑙) 2

The diffraction pattern of a homogenously illuminated system 

is the square of the Fourier transform of that system

scattering amplitude from a crystalline material

𝐹𝑐𝑟𝑦𝑠𝑡𝑎𝑙 𝒒 = ෍

𝑙

𝑎𝑙𝑙 𝑎𝑡𝑜𝑚𝑠

𝑓𝑙 𝒒 𝑒𝑖𝒒∙𝒓𝑙

atomic form factor of the 
atom situated at position rl

rl = Rn+rj

Rn lattice vector
rj position vector of the 
atoms in the unit cell 
(= the motif)

lattice unit cell structure factor

= ෍

𝑹𝑛+𝒓𝑗

𝑎𝑙𝑙 𝑎𝑡𝑜𝑚𝑠

𝑓𝑙 𝒒 𝑒𝑖𝒒∙(𝑹𝑛+𝒓𝑗) = ෍

𝑛

𝑒𝑖𝒒∙𝑹𝑛 ෍

𝑗

𝑓𝑙 𝒒 𝑒𝑖𝒒∙𝒓𝑗



Interaction of material with different radiation

Marianne Liebi 29

https://www.ncnr.nist.gov/summerschool/ss16/pdf/NeutronScatteringPrimer.pdf

X-rays and electron-beam interact with 

electrons in the materials, neutrons with 

the atomic nuclei

electron beam: electrostatic (electrostatic potential 

from positively charged nucleus and surrrounding 

electron cloud, strong interaction, very low 

penetration depth

X-ray: electromagnetic, rather strong, intermediate 

penetration depth

Neutrons: short-range strong nuclear interaction, 

large penetration depth, (for unpaired electrons: 

magnetic scattering)



Interaction of material with different material
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electron

interact with the variation 
in electrostatic potential 
coulomb interaction

𝑓 ∝
3

𝑍

strong interaction: 
multiple scattering needs
to be considered
(dynamical diffraction
theory)

neutron

interact with nuclei

point scattering

no clear trend with Z

X-ray

interact with variation 
in electron density
Thomson scattering

𝑓 ∝ 𝑍

most diffraction 
experiments can be 
explained by 
kinematical diffraction 
theory (neglecting 
multple diffraction)



Interaction of X-rays with a crystal
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interaction with 
electron

scattering from an atom

scattering from unit cell



Elastic scattering from a single scatterer
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• X-ray scattering from a single 
electron: Thomson scattering

• electromagnetic dipole radiation 
(non-isotropic) for polarized X-rays



Interaction with electron: dipole radiation
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e-

Philip Willmott: Synchrotron and X-ray Free Electron Laser



Interaction of X-rays with a crystal
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interaction with electron
polarization factor
(decreases intensity at 
higher angles)

scattering from an atom
atomic form factor f

scattering from unit cell



Scattering from an atom 
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dV
Scattering amplitude decreases with 

increasing angle 2θ

(r)
2

Philip Willmott: Synchrotron and X-ray Free Electron Laser

The orbital electrons in an atom move very fast ( of the order of 10-18 sec for one orbital) and therefore 

an impinging wave sees only an average electron cloud which is characterized by an electron density of 

charge ρ(r)



Scattering and Fourier Transform
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2 electrons

N electrons

Scattering amplitude: 𝐴 𝒒 = −𝑟0(1 + 𝑒𝑖𝒒⋅𝒓)

Phase difference of electron placed at position Ԧ𝑟 : 
Δ𝜑(𝒓) = 𝒌 − 𝒌′ ⋅ 𝒓 = 𝒒 ⋅ 𝒓

Phase factor : 𝑒Δ𝜑(𝒓)= 𝑒𝑖𝒒⋅𝒓

Scattering amplitude: 𝐴 𝒒 = −𝑟0 ෍
𝑗

𝑒𝑖𝒒⋅𝒓

𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝑜𝑓 𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛 𝑝𝑙𝑎𝑐𝑒𝑑

𝑎𝑡 𝑜𝑟𝑖𝑔𝑖𝑛 (𝒓= 0)

Electron distribution 𝜌( Ԧ𝑟)

atomic form factor: 𝑓0 𝒒 = න 𝜌(𝒓)𝑒𝑖𝒒⋅𝒓𝑑𝒓

Fourier Transform of electron
density distribution !



Scattering from an atom
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dV

(r)
2

Philip Willmott: Synchrotron and X-ray Free Electron Laser

quantify phase difference between 

scattered radiation from any two dV

and integrate contributions from all 

the volume elements

→ scattering amplitude of an atom 

as a function of the scattering 

angle and photon energy

→ in forward direction no phase 

difference, no destructive 

interference

→ atomic form/scattering  factor

→ Fourier transform of electron 

density distribution (r)

 



Elastic scattering and atomic form factor
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Willmott, P. (2019). Scattering Techniques. An Introduction to Synchrotron Radiation, John Wiley & Sons, 
Ltd: 133-221.

light atom heavy atom

photon wave length < electron cloud

forward direction f0(0): integral of the electron density over the 

atom’s electron cloud: atomic number Z

for q≠0 scattering amplitude decreases with increasing 2θ

drop off is steeper for Z1 (core electrons are closer to nuclear

core, heavy atoms have electron density concentrated in a

smaller central volume)

single electron

q

f

Z3>Z2>Z1



Interaction of X-rays with a crystal
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interaction with electron
polarization factor

scattering from an atom
atomic form factor f

scattering from unit cell
structure factor F



Diffraction and Fourier transform

scattering amplitude from a crystalline material

𝐹𝑐𝑟𝑦𝑠𝑡𝑎𝑙 𝒒 = ෍

𝑙

𝑎𝑙𝑙 𝑎𝑡𝑜𝑚𝑠

𝑓𝑙 𝒒 𝑒𝑖𝒒∙𝒓𝑙

atomic form factor of the 
atom situated at position rl

rl = Rn+rj

Rn lattice vector
rj position vector of the 
atoms in the unit cell 
(= the motif)

lattice unit cell 
structure factor

= ෍

𝑹𝑛+𝒓𝑗

𝑎𝑙𝑙 𝑎𝑡𝑜𝑚𝑠

𝑓𝑗 𝒒 𝑒𝑖𝒒∙(𝑹𝑛+𝒓𝑗) = ෍

𝑛

𝑒𝑖𝒒∙𝑹𝑛 ෍

𝑗

𝑓𝑗 𝒒 𝑒𝑖𝒒∙𝒓𝑗

with Laue’s condition for 
constructive interference 

q = K, with 𝑲 ∈ ℛ
at any other scattering vector q, 
the intensity is zero

𝑆 𝑲 = ෍

𝑗

𝑓𝑗 𝑲 𝑒𝑖𝑲∙𝒓𝑗



Interaction with a unit cell
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Unit cell in Bragg condition:
phase must be the same from one unit 

cell to the next: corners have the same 
phase



Interaction with a unit cell

Scattering atoms associated with basis in 
unit cell 

Phases of scattered waves 

Depends on their location within the 

unit cell 
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Atom 1: 1 ≃ /6 (30o) 
Atom 2: 2 ≃ 2/3 (120o) 

Atom 3: 3 ≃ /2 (90o) 



Interaction with a unit cell

Scattering atoms associated with basis in 
unit cell 

Phases of scattered waves 

Depends on their location within the 

unit cell 

Amplitudes of scattered waves 

Given by atomic form factors for 

q = 2π/dhkl

q

f

MSE-238



Interaction with a unit cell: the structor 
factor

𝑲 ∙ 𝒓 = (h𝒂∗+𝑘𝒃∗+𝑙𝒄∗) ∙ (xja+yjb+ zjc)

with 𝒂*𝒂=𝒃*𝒃=c*c= 𝟐𝝅 and 

𝒂*𝒃=𝒃*𝒂=𝒄*𝒂 … =0

𝑲 ∙ 𝒓 = 2𝜋(ℎ𝑥𝑗 + 𝑘𝑦𝑗 + 𝑙𝑧𝑗)

Intensity of measured Bragg peak (hkl) is proportional to |Shkl|
2 

All phase information is lost! 

𝑆 𝑲 = ෍

𝑗

𝑓𝑗 𝑲 𝑒𝑖𝑲∙𝒓𝑗

phase 𝜙
K ∈ ℛ
rj ∈ 𝒟 

 



Interaction with a unit cell: the structor factor

Example
Phases of scattered waves

Atom 1: 1 ≃ /6 (30o) 

Atom 2: 2 ≃ 2/3 (120o) 

Atom 3: 3 ≃ /2 (90o) 

Amplitudes of scattered waves 

Atomic form factors for 

q = 4/ sin 

Q

f
/6

2/3

/2

Im

Re

S

S = f1 + f2 + f3

f1

f2

f3
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One can also consider S as the vector sum of 
atomic form factors

Argand diagram



Diffraction pattern and systematic absences

but why is there no (001) reflection?

For a given peak, 𝑲 = ℎ𝒂∗ +𝑘𝒃∗ +𝑙𝒄∗ in the reciprocal space, 
and an associated perpendicular plane (hkl)

nanocrystalline Ni



Structure factor
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𝑆 𝑲 = ෍

𝑗

𝑓𝑗 𝑲 𝑒𝑖𝑲∙𝒓𝑗

Cl

Cs

▪ The 𝒓𝑗 are the vector position of the atoms in the motifs. 

Cl

Cs

𝒓𝐶𝐿 =
0
0
0

𝒓𝐶𝑠 =

1/2
1/2
1/2

𝑆 𝑲 = ෍

𝑗

𝑓𝑗 𝑲 𝑒𝑖𝑲∙𝒓𝑗 = 𝑓𝐶𝑙 𝑲 𝑒𝑖𝑲∙𝒓𝐶𝑙 + 𝑓𝐶𝑙 𝑲 𝑒𝑖𝑲∙𝒓 𝐶𝑙

𝑲 ∙ 𝒓𝐶𝑙 = 0 𝑲 ∙ 𝒓𝐶𝑠 = h𝒂∗+𝑘𝒃∗+𝑙𝒄∗ ∙
1

2
a+

1

2
b+

1

2
c =𝜋(ℎ + 𝑘 + 𝑙)

𝑲 ∙ 𝒓 = (h𝒂∗+𝑘𝒃∗+𝑙𝒄∗) ∙ (xja+yjb+ zjc) =2𝜋(ℎ𝑥𝑗 + 𝑘𝑦𝑗 + 𝑙𝑧𝑗)

𝑆 𝑲 = 𝑓𝐶𝑙 + 𝑓𝐶𝑠(−1) ℎ+𝑘+𝑙

𝑒𝑖0 = 1 𝑒𝑖𝜋 = 𝑒−𝑖𝜋 = −1



Structure factor and diffraction peak

48

𝑆 𝑲 = 𝑓𝐶𝑙 + 𝑓𝐶𝑠        for ℎ + 𝑘 + 𝑙  even 

𝑆 𝑲 = 𝑓𝐶𝑙 − 𝑓𝐶𝑠        for ℎ + 𝑘 + 𝑙  odd

▪ Hence for CsCl we have: 

𝑓𝐶𝑙 ≠ 𝑓𝐶𝑠

XRD peaks calculated measured

Intensity is proportional to the square of the structure factor 𝐼 ℎ𝑘𝑙 ∝ 𝑆(ℎ𝑘𝑙) 2

why is (110) larger than (100)?
why is (111) smaller than (100)? 



Interaction of X-rays with a crystal

MSE-238

interaction with electron
polarization factor
(decreases intensity at 
higher angles)

scattering from an atom
atomic form factor f

scattering from unit cell



Structure factor and diffraction peak

50

𝑆 𝑲 = 𝑓𝐶𝑙 + 𝑓𝐶𝑠        for ℎ + 𝑘 + 𝑙  even 

𝑆 𝑲 = 𝑓𝐶𝑙 − 𝑓𝐶𝑠        for ℎ + 𝑘 + 𝑙  odd

▪ Hence for CsCl we have: 

▪ Peaks observed: 

Cs

I

▪ For CsI, many peaks disappear ! Cs and I are isoelectronic: 𝑓𝐼 = 𝑓𝐶𝑠 ! 

𝑓𝐶𝑙 ≠ 𝑓𝐶𝑠



X-ray diffraction and systematic absences

51

Some peaks are also systemically absent from diffraction patterns also in single atom motifs 

This is surprising since for a single atom motif, 𝑆 𝑲 = σ𝑗 𝑓𝑗 𝑲 𝑒𝑖𝑲∙𝒓𝑗 = 𝑓𝑀0
.

Example BCC Molybdenum (Mo) metal. 



X-ray diffraction and systematic absences

52

Some peaks are also systemically absent from diffraction patterns in single atom motifs

This is surprising since for a single atom motif, 𝑆 𝑲 = σ𝑗 𝑓𝑗 𝑲 𝑒𝑖𝑲∙𝒓𝑗 = 𝑓𝑀0
.

However, the (h,k,l) intercepts here defined on the conventional cell, which means there is 

more than one motif in this cell!

At  𝜃1 where Bragg law is fullfilled for the (100) planes diffraction, the parallel planes 
(200) diffract out of phase, resulting in destructive interferences.

 At  𝜃2 where Bragg law is fullfilled for the (200) planes diffraction, the parallel planes 
(100) diffract inf phase, resulting in constructive interferences.

𝜃1 𝜃2



X-ray diffraction and systematic absences

53

We can view non-primitive crystal structures as being defined by the conventional cell, and 
a motif with a number of atoms equal to the number of atoms per conventional cell. 

▪ Be careful: while it describes a similar crystal, it is not a rigorous way to look at crystal 
structures, as it leads to believe that the BCC and FCC don’t have their own Bravais 

Lattice prime vectors. Also, it leads to believe that planes like the (200) planes are not 
crystal planes for the BCC and FCC structures !

     It is however a good way to treat diffraction and understand systematic absences. 

𝑆 𝑲 = 2𝑓𝑀𝑜 for ℎ + 𝑘 + 𝑙  even 

𝑆 𝑲 = 0          for ℎ + 𝑘 + 𝑙  odd

▪ Indeed, to these multiple atoms motifs, 
we can now apply the formalism of 

structure factors developed for CsCl: 

▪ 𝑆 𝑲 = 𝑓𝑀𝑜 1 + (−1) ℎ+𝑘+𝑙



Face-centered cubic (fcc): 4 identical atoms/unit 
cell at positions:

0, 0, 0 (corner) 

½ ½ 0 (face centre) 

½ 0 ½ (face centre) 

0 ½ ½ (face centre) 

S001? 

Interaction with a unit cell: the structor 
factor

𝑲. 𝒓 = 2𝜋(ℎ𝑥𝑙 + 𝑘𝑦𝑙 + 𝑙𝑧𝑙)

𝑆 𝑲 = ෍

𝑗

𝑓𝑗 𝑲 𝑒𝑖𝑲∙𝒓𝑗



Face-centered cubic (fcc): 4 identical atoms/unit 
cell at positions:

0, 0, 0 (corner) 

½ ½ 0 (face centre) 

½ 0 ½ (face centre) 

0 ½ ½ (face centre) 

S001? 

S001 = fatom[exp(0) + exp(0) + exp(-i) + exp(-i)] 

       = fatom[1 + 1 - 1 - 1] = 0!! 

Bragg’s law tells you that you will see a Bragg peak at 
(hkl) = (001) 

But structure factor here = 0  “systematic absence”

 General rule for fcc crystals: only Bragg peak 

intensity if : h,k,l all odd, or h,k,l all even 

Interaction with a unit cell: the structor 
factor



Face-centered cubic (fcc): 4 identical atoms/unit 
cell at positions:

0, 0, 0 (corner) 

½ ½ 0 (face centre) 

½ 0 ½ (face centre) 

0 ½ ½ (face centre) 

General rule for fcc crystals: only Bragg peak intensity 

if : h,k,l all odd, or h,k,l all even

Interaction with a unit cell: the structor 
factor
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remember  that 𝑒𝑖𝜋 𝑛  = 1  when n is an even integer

               = -1 when n is an odd integer



1/8

1/2

h k l all even, or h k l all odd 

h + k + l = 2n (i.e. even) 

All h k l combinations allowed

h k l all even AND h+k+l = 4n, or h k l all odd 

Interaction with a unit cell: systematic 
absences



• Example: nanocrystalline Ni

Interaction with a unit cell

Why is there no (001) reflection?

diffraction pattern gives 
“fingerprint” of the 
diffracting substance, peak 
position and height is used 
for phase identification



Summary

• Bragg law defined geometrically in direct lattice, Laue condition connects to the 
reciprocal lattice

• Diffraction as Fourier transform of a crystal = lattice & motif!

• Structure of the motif can be solved if the phase problem can be overcome

• Interaction of X-rays with electrons → polarization factor

• Interactions of X-rays with atoms → atomic form factor, FT of the electron 
density

• Interaction of X-rays with a unit cell of a crystal → structure factor

• Diffraction pattern 

→position according to reciprocal lattice (Bragg, Laue)

→intensity depends on the motif, vector sum of atomic form factors, can lead 
to systematic absences due to destructive interference

MSE-238 59
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